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The generalized orthogonal ensemble satisfies isoperimetric inequalities analo-
gous to the Gaussian isoperimetric inequality, and an analogue of Wigner’s law.
Let v be a continuous and even real function such that V(X)=trace v(X)/n
defines a uniformly p-convex function on the real symmetric n×n matrices X
for some p \ 2. Then n(dX)=e−V(X)dX/Z satisfies deviation and transportation
inequalities analogous to those satisfied by Gaussian measure(6, 27), but for the
Schatten cp norm. The map, that associates to each X ¥M s

n(R) its ordered
eigenvalue sequence, induces from n a measure which satisfies similar inequali-
ties. It follows from such concentration inequalities that the empirical distribu-
tion of eigenvalues converges weakly almost surely to some non-random com-
pactly supported probability distribution as nQ..

KEY WORDS: Random matrices; transportation; isoperimetric inequality;
statistical mechanics.

1. INTRODUCTION AND MAIN RESULTS

We consider an ensemble of real symmetric n×n random matrices which
generalizes the Gaussian orthogonal ensemble of Dyson and Mehta(20) and
arises in quantum gravity. We show that the empirical distribution of
eigenvalues converges weakly almost surely as nQ., thereby providing an
analogue of Wigner’s semicircle law, for a general class of potentials which
we call ‘‘uniformly p-convex.’’ To achieve this, we establish isoperimetric
and transportation inequalities involving entropy with respect to the
ensembles, which may be of independent interest.



Let Mn(R) denote the real n×n matrices, with symmetric part M s
n(R).

Each X ¥M s
n(R) has a unique list of eigenvalues l=(lj)

n
j=1, in increasing

order according to multiplicity, determining an element of the simplex

Sn={(lj) ¥ Rn : l1 [ l2 [ · · · [ ln}. (1.1)

The normalized trace on M s
n(R) is tracen (X)=

1
n ;n

j=1 lj, and the nor-
malized Schatten cp(n) norms are defined on Mn(R) by

||X||pcp(n)=tracen(X†X)
p
2 (X ¥Mn(R)). (1.2)

The normalized sequence space norms ap(n) on Rn are ||l||ap(n)=
(1n ;n

j=1 |lj |p)1/p.
Let v be a continuous and even real function with v(0)=0 and

v(x) \
n+1
n

log |x| (1.3)

for all sufficiently large |x|. Using the functional calculus of real symmetric
matrices, we set V(X)=tracen v(X). Taking dX to denote the product of
Lebesgue measure on the entries lying on or above the leading diagonal of
the symmetric matrices, we can define a bounded positive measure on
M s

n(R) by e−n2V(X) dX; then for some normalizing constant 0 < Zn <.,

nn(dX)=Z−1
n e

−n2V(X) dX (1.4)

defines a probability measure on M s
n(R). This is termed the generalized

orthogonal ensemble in ref. 7, and we now review its basic properties.
The group O(n) of real orthogonal matrices acts on M s

n(R) by
conjugation XW UXU† (X ¥M s

n(R), U ¥ O(n)), and the coset space may
be identified with Sn. This is merely a restatement of the fact that any real
symmetric matrix may be diagonalized using real orthogonal matrices.
Under this action, the measure nn is invariant in the sense that

F
Ms

n(R)
F(UXU†) nn(dX)=F

Ms
n(R)

F(X) nn(dX) (1.5)

for all bounded and continuous functions F: M s
n(R)Q R and U ¥ O(n).

Thus the ensemble is statistically invariant under a change of basis of Rn.
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Let L: XW (lj) be the map M s
n(R)Q Sn that associates to any matrix

its ordered eigenvalues. The measure sn induced by L from nn is charac-
terized by

F
S
n
f(l) sn(dl)=F

Ms
n(R)

f(L(X)) nn(dX) (f ¥ Cb(Sn)); (1.6)

further, sn is absolutely continuous with respect to Lebesgue volume
measure on Sn and may be represented as

sn(dl)=Z(n, v)−1 exp 3 C
j, k: 1 [ j < k [ n

log |lj−lk |−n C
n

j=1
v(lj)4 dl1 dl2 · · · dln

(1.7)

for some constant 0 < Z(n, v) <.. One can show that there exists a
probability measure P on the space W=R. of all matrix entries, and
Xn: (W, P)QM s

n(R) random matrices with distribution nn(dX) for n \ 1.
The following physical interpretation is suggested by Wigner(20): Let lj

for (j=1, 2,..., n) be the positions of atoms in a one-dimensional gas in a
two-dimensional universe. Then v(lj) represents the potential attracting the
jth particle towards zero; whereas log |lj−lk | represents the electrostatic
repulsion between particles j and k.

We make some special assumptions on the potential v which ensure
that there is a single potential well given by a convex surface. When, as in
Wigner’s ensemble, we have v(x)=x2/2, the corresponding V satisfies the
parallelogram law V(X)+V(Y)−2V((X+Y)/2)=2V((X−Y)/2); for our
more general ensembles V satisfies a related inequality.

Definition (ref. 5). For 2 [ p <. we shall say that V is uniformly
p-convex if V: M s

n(R)Q R is convex and symmetric V(X)=V(−X), and
further there exist C, os > 0, independent of dimension n, with the property

sV(X)+tV(Y)−V(sX+tY) \ C(s+os) ||X−Y||
p
cp(n) (X, Y ¥M s

n(R))
(1.8)

for all 0 [ s, t [ 1 with s+t=1, where os/sQ 0 as sQ 0+. Henceforth we
shall assume that V has this property.

Let w be a real polynomial which defines an Orlicz function, so that:

(i) w(0)=0, and w is strictly increasing and convex on [0,.);

and further suppose

(ii) xwŒ(x)/w(x) is increasing on (0,.).
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Proposition 1.1. The polynomial v(x)=w(x2) also satisfies (i) and
(ii), and

V(X)=tracen w(X†X) (X ¥Mn(R)) (1.9)

is uniformly p-convex on Mn(R), where p is the degree of v.

Examples. (a) The non-commutative Clarkson inequality(26) shows
that, for 2 [ p <., v(x)=|x|p gives rise to a uniformly p-convex potential
V(X)=tracen(X†X)

p
2. In quantum field theory(7) one considers the class of

even polynomials with non-negative coefficients, which satisfy (i) and (ii);
and one can construct other examples. Brézin(8) et al. consider the potential
V(X)=;n

j=1 (l
4
j+b2l

2
j/n) with b2 > 0 in the context of the planar

approximation to field theory, and show that the ground state of such an
ensemble is related to the ground state of the one-dimensional x4-anhar-
monic oscillator.

(b) When v(x)=x2, we observe that V(X)=||X||2c2(n). Further, the
scaled Hilbert–Schmidt norm reduces to the square sum of matrix entries
||X||2c2(n)=

1
n ;n

j, k=1 [X]
2
jk. Here (1.8) is a direct consequence of the paral-

lelogram rule and nn is a Gaussian measure on M s
n(R). Indeed, the formula

(1.4) factorizes as a tensor product of measures on the matrix entries, and
one can regard ([X]jk)j [ k as mutually independent Gaussians with [X]jj ’
N(0, 1

2n) and [X]jk ’N(0, 1
4n) for j < k.

For general uniformly p-convex V, we should not expect any simple
description of the ensemble in terms of the matrix entries, which can be
correlated as random variables. Mehta(20) argues that it is quite natural to
consider ensembles which are invariant under orthogonal transformation,
whereas it is somewhat artificial to assume that the matrix elements are
statistically independent. The main purpose of this paper is to show that,
nevertheless, several results known for nn and sn in the Gaussian case
extend to the uniformly p-convex setting. See refs. 3, 4, 6, 15, 19 and 27 for
corresponding Gaussian results.

The empirical distribution of eigenvalues is specified by the probability
measures

mn=
1
n

C
n

j=1
dlj (1.10)

on R, where dl denotes the unit point mass at l, and the lj are random
eigenvalues subject to the distribution sn. One can also phrase results in
terms of the normalized eigenvalue counting function for the ensemble sn,
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namely the random function Nn(l)=n−1#{j: lj [ l} (l ¥ R). Our extension
of Wigner’s semicircle law is:

Theorem 1.2. Let V be uniformly p-convex. Then under the laws
(1.7) the empirical distributions of eigenvalues converge weakly almost
surely to some non-random probability measure r supported in some
bounded interval [−K, K], so that

F
.

−.
f(x) mn(dx)Q F

K+

−(K+)
f(x) r(dx) (nQ.) (1.11)

almost surely for each bounded and continuous real function f, and
further Nn(l)Q >l+−. r(dx) as nQ. almost surely at all points of conti-
nuity of the limiting cumulative distribution function.

When v is twice continuously differentiable and convex, r is absolutely
continuous and satisfies the singular integral equation

vŒ(l)=F
K

−K

r(dx)
l−x

(−K < l < K). (1.12)

This may be inverted to give the density dr/dx as a singular integral
involving vŒ. See refs. 7, 22. In particular, Johansson(16) gives the following:

Proposition 1.3. Let v be as in Proposition 1.1. Then there exists a
polynomial r(x) of degree p−2, with zeros which are not real, such that

r(dx)=
1
p
r(x){(b−x)(x−a)}1/2 I[a, b](x) dx (1.13)

where a and b are finite and I denotes the indicator function.

For Hölder continuous v satisfying v(l) \ (2+e) log |l| for |l|Q.,
Boutet de Monvel, Pastur and Shcherbina(7) analyze integrated densities
of states, the probability measures (IDS) qn on R that satisfy > f dqn=
>> f dmn dsn. They prove that > f dqn Q > f dr by mean field theory tech-
niques, and also show that the Nn(l) converge in probability to >l+−. dr.
Deift(9) et al. study a large class of C. ensembles of complex Hermitian
random matrices using Gaudin’s method of orthogonal polynomials and
achieve asymptotic results in the case in which the equilibrium measure is
supported on a finite union of disjoint intervals. For continuous potentials
with v(l) \ (1+e) log |l| (|l|Q.) for some e > 0, Kiessling and Spohn(18)

establish the existence of a limiting eigenvalue distribution as the minimizer
of a variational problem; this is unique under regularity hypotheses on v.
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This variational approach, while very general, inevitably gives weaker
control over the strength of convergence.

To obtain almost sure convergence, we use ‘‘concentration of
measure,’’ suggested by refs. 15, 27. Before stating the concentration
inequalities, we recall some basic definitions from refs. 11, 12.

Let (W, d) be a complete and separable metric space, and w and +

Radon probability measures on W. When w is absolutely continuous with
respect to +, we can unambiguously define the relative entropy of w with
respect to + by

Ent(w | +)=F
W

dw

d+
log

dw

d+
d+; (1.14)

where by Jensen’s inequality 0 [ Ent(w | +) [..
When >W d(x, x0)p +(dx) <. for some x0 ¥ W and p > 0, we can define

the transportation cost for cost function d(x, y)p by

Wp(w, +)p=inf 3FF
W×W

d(x, y)p p(dx dy) : p has marginals p1=w, p2=+4.
(1.15)

The infimum is attained, when W is locally compact; and the probability
measure p defines a strategy for transporting the distribution + to w. The
reader may wish to think of moving a pile of sand to fill a hole of equal
volume as economically as possible when the cost of moving each grain
grows like the pth power of the distance moved. For p \ 1, Wp(w, +) gives
the Wasserstein metric on the space of probability distributions on W with
finite pth moment. The Kantorovich–Rubinstein(11) duality formula gives
the expression

Wp(w, +)p=sup 3F
W

f(x) w(dx)−F
W

g(y) +(dy):

f(x)−g(y) [ d(x, y)p; x, y ¥ W4 (1.16)

wherein f, g: W Q R may be taken to be continuous. For the empirical
eigenvalue distribution we have the simplified identity from ref. 11

W1(mn, r)=F
.

−.
|Nn(l)−F

l+

−.
r(s) ds| dl,

and we show this expression converges to zero almost surely as nQ..
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The following results are used in the proof of Theorem 1.2, and apply
to a uniformly p-convex V.

Theorem 1.4. (a) Any probability measure w on M s
n(R), which is

absolutely continuous and of finite entropy with respect to nn, satisfies the
transportation inequality

Wp(w, nn)p [
Cp

n2 Ent(w | nn) (1.17)

for cost function ||X−Y||pcp(n), where Cp depends upon p and the potential v
only.

(b) Any probability measure + on Sn, which is absolutely continuous
and of finite entropy with respect to sn, satisfies the transportation
inequality corresponding to (1.17) for cost function ||l−m||pap(n)=
1
n ;n

j=1 |lj−mj |p.

We shall establish two closely related concentration inequalities for nn
and sn, the first of which is an isoperimetric inequality. For A a subset of a
metric space (W, d), we define the e-enlargement of A to be

Ae={x ¥ W : d(x, a) [ e for some a ¥ A}. (1.18)

Theorem 1.5. (a) Let A be a Lebesgue measurable subset of
M s

n(R) with nn(A) \
1
2 . Then the e-enlargement for the metric ||X−Y||cp(n)

satisfies, for some constant cp > 0,

nn(Ae) \ 1− exp(−cpepn2) (e > 0). (1.19)

(b) Let A ı Sn be a Lebesgue measurable set with sn(A) \
1
2 . Then its

e-enlargement for the metric of ap(n) satisfies, for some constant cp > 0,

sn(Ae) \ 1− exp(−cpepn2) (e > 0). (1.20)

The functional form of the above isoperimetric inequality is a deviation
estimate for Lipschitz functions. Given metric spaces (Wj, dj) (j=1, 2),
a function f: W1 Q W2 is said to be L-Lipschitz if d2(f(x), f(y)) [ Ld1(x, y)
for all x, y ¥ W1. We abusively call such an L the ‘‘Lipschitz norm’’ of f.
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Theorem 1.6. (a) Let F: (M s
n(R), || . ||cp(n))Q R be a 1-Lipschitz

function with > F(X) nn(dX)=0. Then

F
Ms

n(R)
exp{tF(X)} nn(dX) [ exp{tqcpn−2/(p−1)} (t > 0) (1.21)

where 1
p+

1
q=1 and cp depends upon p and v only.

(b) Any 1-Lipschitz function f: (Sn, || . ||ap(n))Q R with > f(l) sn(dl)
=0 satisfies such an inequality, with similar constants.

As p increases, so the concentration inequality becomes stronger.
The proof of these results begins in section two, where we derive some

basic properties of uniformly convex potentials. In section three we shall
show that Theorems 1.4(a), 1.5(a) and 1.6(a) may be deduced from the
Prékopa–Leindler inequality by the procedure of Bobkov and Ledoux(5).
Theorems 1.4(b), 1.5(b) and 1.6(b) will be deduced in section four by con-
sideration of the eigenvalue map L: XW (lj). In section five we use the
concentration inequalities to establish almost sure convergence in the weak
sense for the empirical distribution of eigenvalues. Section six contains
another approach to Theorem 1.2 for 2-uniformly convex potentials, which
emphasizes the close connection between Theorems 1.4 and 1.6 and known
results from the theory of logarithmic Sobolev inequalities as developed in
refs. 1, 13, 23. In section seven we consider perturbations of a uniformly
p-convex potential and how the limiting measure changes under perturba-
tion. We conclude the paper with a conjectured extension of Theorem 1.2
to multiple-well potentials.

2. UNIFORMLY CONVEX POTENTIALS

Proof of Proposition 1.1. Clarkson showed that for 2 [ p <.,
functions f and g in Lp(R) satisfy > (|f|p+|g|p)−2 > |(f+g)/2|p \
2 > |(f−g)/2|p; this expresses the uniform p-convexity of Lp(R). Geome-
trically it means that the unit sphere {f ¥ Lp(R) : > |f|p=1} has no flat
faces. Similar inequalities hold for the Schatten norms of matrices ||X||pcp(n)
=tracen(X†X)p/2, as was demonstrated by Dixmier et al. (28) In ref. 2, Ball,
Carlen and Lieb give a historical account of such non-commutative Clark-
son inequalities, and present best possible constants for the full range of p.

In this section we shall give a self-contained proof that

V(X)+V(Y)−2V 1X+Y
2
2 \ 2V 1X−Y

2
2 . (2.1)
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This implies uniform p-convexity, as we now verify. The inequality

sV(X)+tV(Y)−V(sX+tY) \ min{t, s} V 1X−Y
2
2 (2.2)

then holds for all 0 [ s, t [ 1 with s+t=1. Indeed, it holds for s=0, and
s=1

2 by (2.1); the expression V(tX+sY) is a convex function of s, and the
right-hand side of (2.2) is linear in s for 0 [ s [ 1

2 , so the inequality persists
for 0 [ s [ 1

2 by concavity of the left-hand side.
It is a simple exercise to show that v(x) satisfies (i) and (ii) of Proposi-

tion 1.1, if and only if w does. To bound below the right-hand side of (2.2),
we observe that v(x)/v(tx) is a decreasing function of x ¥ (0,.) for each
fixed 0 < t < 1; so by considering the limiting behaviour at ., we deduce
that v(tx) \ tpv(x). In particular, we have v(x/2) \ 2−pv(x), which implies
V(X−Y

2 ) \ 2−pV(X−Y). In the language of Orlicz space theory, we have
shown that v satisfies the D2 condition at zero.

The expression v(x)/xp is decreasing on account of (ii), and hence
bounded below by its limit at . which is the leading coefficient ap of v.
Hence

V 1X−Y
2
2 \ ap

2p ||X−Y||
p
cp(n). (2.3)

To justify (2.1), we follow the proof of the non-commutative Clarkson
inequalities from ref. 26. For any matrix X, we let mj be the jth largest
singular number of X; that is, the jth largest eigenvalue of (X†X)1/2

counted according to multiplicity. With W(X)=1
n ;n

j=1 w(mj(X)) we have,
for any matrices A and B,

W 1A+B
2
2 [ 1

2
(W(A)+W(B)). (2.4)

Indeed, by Lidskii’s Theorem,(26) there exists a doubly substochastic matrix
[akm] such that

mk
11
2
(A+B)2=1

2
mk(A)+

1
2

C
n

m=1
akmmm(B) (k \ 1). (2.5)

Since w is convex and increasing, we deduce

w 3mk
11
2
(A+B)24 [ 1

2
w(mk(A))+

1
2

C
n

m=1
|akm | w(mm(B)) (k \ 1)

(2.6)

and we now deduce (2.4) on summing (2.6) over k.
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Conversely, for positive matrices A and B we have

W(A)+W(B) [W(A+B), (2.7)

as we now recall. By adding eIn to A if necessary, we can assume that A+B
is invertible. The matrices

C=A
1
2(A+B)−

1
2 and D=B

1
2(A+B)−

1
2 (2.8)

satisfy CgC+DgD=In, which already implies ||Cg||, ||Dg|| [ 1, and
furthermore

A=C(A+B) Cg and B=D(A+B) Dg. (2.9)

Let (fk) be an orthonormal basis consisting of eigenvectors of A corre-
sponding to eigenvalues (mk(A)), and (kk) an orthonormal basis consisting
of eigenvectors of B corresponding to eigenvalues (mk(B)). It follows from
Jensen’s inequality and the spectral theorem that

w(mk(A))=w(OAfk, fkP) [ Ow(A+B) Cgfk, CgfkP,

w(mk(B))=w(OBkk, kkP) [ Ow(A+B) Dgkk, DgkkP.
(2.10)

On summing these expressions over k, we deduce that

W(A)+W(B) [ tracen(Cw(A+B) Cg+Dw(A+B) Dg)

=tracen((CgC+DgD) w(A+B))

=tracen(w(A+B)). (2.11)

Since A+B \ 0, its singular numbers are simply its eigenvalues; and so the
spectral theorem gives us (2.7).

To complete the proof of (2.1), we recall that V(X)=tracen w(X†X),
and use the inequality (2.4) to deduce

V(X)+V(Y)=W(X†X)+W(Y†Y) \ 2W 1X
†X+Y†Y
2
2

=2W 11
4
(X+Y)† (X+Y)+

1
4
(X−Y)† (X−Y)2 . (2.12)
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On account of the inequality (2.7), this is

\ 2W 11
4
(X+Y)† (X+Y)2+2W 11

4
(X−Y)† (X−Y)2

=2V 1X+Y
2
2+2V 1X−Y

2
2 . (2.13)

3. CONCENTRATION OF MEASURE FOR MATRIX ENSEMBLE

The space M s
n(R) may be identified with Rn(n+1)/2 by associating to

each matrix X the vector ([X]jk) (j [ k) of its entries on or above the
leading diagonal. The Prékopa–Leindler inequality asserts that, if u, v, w:
Rn(n+1)/2 Q R+ are measurable functions with w(tX+sY) \ u(X) t v(Y) s for
all X, Y ¥ Rn(n+1)/2 and s, t \ 0 with s+t=1, then

F w dX \ 1F u dX2
t 1F v dX2

s

(3.1)

where dX denotes Lebesgue measure on Rn(n+1)/2. From this fundamental
inequality all of the results of this section follow by the procedure which
Bobkov and Ledoux(5) have developed.

Proof of Theorem 1.4(a). Employing a device of Maurey(5), we let

Ls(X, Y)=
1
ts
(tV(X)+sV(Y)−V(tX+sY)) (X, Y ¥M s

n(R)) (3.2)

for s, t \ 0 with s+t=1. It follows from the uniform p-convexity of V that

Ls(X, Y) \
C
pt
(1+os) ||X−Y||

p
cp(n) (X, Y ¥M s

n(R)) (3.3)

where os Q 0 as sQ 0+ and all the positive constants are independent of
n, X and Y. Let F, G: M s

n(R)Q R be bounded and continuous functions
with

F(Y)−G(X) [
C
p
||X−Y||pcp(n) (X, Y ¥M s

n(R)). (3.4)
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Then by the Prékopa–Leindler inequality

1=F e−n2VdX/Zn \ 1F e−sn2G−n2VdX/Zn
21/s 1F e tn2F−n2VdX/Zn

21/t. (3.5)

Letting sQ 0+, we deduce that

F exp(n2F) dnn [ exp F n2G dnn. (3.6)

The relative entropy of an absolutely continuous probability measure +

with respect to nn may be expressed as

Ent(+ | nn)=sup 3F h d+ : F eh dnn [ 14 . (3.7)

This duality relation is a consequence of the elementary fact that x log x
(x > 0) attains its minimum at x=1/e. By the preceding inequality (3.6),
h(X)=n2F(X)−n2 > G dnn is an admissible choice to substitute into the
right-hand side of (3.7); and so we deduce

Ent(+ | nn) \ n2 F F(X) +(dX)−n2 F G(Y) nn(dY). (3.8)

We conclude the argument by taking the supremum of (3.8) over all pairs
(F, G) subject to the constraint (3.4). The Kantorovich–Rubinstein duality
theorem of (1.16) shows that

Ent(+ | nn) \
n2p
C

Wp(+, nn)p. (3.9)

Proof of Theorem 1.5(a). Marton(27) showed that transportation
inequalities may be converted into isoperimetric inequalities by the follow-
ing argument. Let B=(Ae)c be the complement of the e-enlargement of A
in M s

n(R), and introduce the conditional probabilities

+A(E)=nn(A 5 E)/nn(A), +B(E)=nn(B 5 E)/nn(B), (3.10)

which are supported on the sets A and B at distance e apart. It follows that

e [ Wp(+A, +B) [ Wp(+A, nn)+Wp(nn, +B) (3.11)
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by the triangle inequality; and the transportation inequality (3.9) shows this
sum to be

and by calculation we see this expression is

[ 1 C
pn2 Ent(+A | nn)2

1/p

+1 C
pn2 Ent(+B | nn)2

1/p

; (3.12)

[ 1 C
pn2 log

1
nn(A)
21/p+1 C

pn2 log
1

nn(B)
21/p. (3.13)

From this inequality (3.13), and the obvious fact nn(B) [ 1− nn(A), we
deduce

nn(A) nn(B) [ min 31
4
, exp 1 − epn2p

2p−1C
24 [ 1

2
exp 1 − eppn2

2pC
2 ; (3.14)

which implies the required result.

Proof of Theorem 1.6(a). The condition, that inequality

F
Ms

n(R)
e tG−tqonn(dX) [ 1 (t > 0) (3.15)

holds for all 1-Lipschitz G: M s
n(R)Q R with > G(X) nn(dX)=0, is equiva-

lent to the condition that inequality

Ent(+ | nn) \ t F
Ms

n(R)
G d+−tqo (t > 0) (3.16)

holds for all such G and all probabilities + of finite entropy with respect
to nn. We recall the proof from ref. 4.

The forward implication is immediate from the duality formula (3.7);
whereas the reverse implication is given by the following proof by contra-
diction: Suppose that (3.16) holds and > e tG−tqo dnn=ea , where a > 0. Then
d+=e tG−tqo−a dnn defines a probability for which the entropy is

Ent(+ | nn)=F
Ms

n(R)
(tG−tqo−a) d+ [ Ent(+ | nn)−a (3.17)

by (3.16). Since a > 0, this cannot hold.
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We further reduce the claim of the Theorem by optimizing (3.16) over t,
which leaves us with the equivalent condition

Ent(+ | nn) \ o− 1
q−1 1F

Ms
n(R)

Gd+2
p

q− p
qp−1. (3.18)

However, the transportation inequality (1.17) implies by Hölder’s
inequality that

Ent(+ | nn) \
n2p
C

W1(+, nn)p, (3.19)

where the cost function is now ||X−Y||cp(n). By duality (1.16) we have

Ent(+ | nn) \
n2p
C
1F

Ms
n(R)

G d+2
p

(3.20)

for any G as above. We deduce that the concentration inequality (3.15)
holds with constant

o=
1
q
1`C
pn
2

2
p−1

. (3.21)

4. CONCENTRATION OF EIGENVALUE DISTRIBUTION

Lemma 4.1. The map L, which associates to each real symmetric
matrix its ordered list of eigenvalues, is 1-Lipschitz for the norms
cp(n)Q ap(n).

Proof. Lidskii(26) showed that, for real symmetric matrices X and Y,
there exists a doubly substochastic matrix [ajk] for which the respective
eigenvalues satisfy

lj(X)−lj(Y)=C
n

k=1
ajklk(X−Y) (j=1, 2,..., n). (4.1)

Every doubly stochastic matrix is an absolute convex combination of per-
mutation matrices, and hence by convexity we have the required inequality

11
n

C
n

j=1
|lj(X)−lj(Y)|p2

1/p

[ 11
n

C
n

k=1
|lk(X−Y)|p2

1/p

. (4.2)
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Proof of Theorem 1.4(b). Using this lemma, we can deduce
Theorem 1.4(b) from Theorem 1.4(a) by abstract duality arguments from
refs. 11, 14. Let mO(n) be Haar probability measure on the real orthogonal
n×n matrices, and let sn and + be measures on Sn, as in the theorem.
Abusing notation, we write L(X) for the diagonal matrix for which the
diagonal entries are the ordered eigenvalues of X ¥M s

n(R). We denote by +̃

the probability measure on M s
n(R) that satisfies

F
M

s
n(R)

F(X) +̃(dX)=FF
O(n)×S

n
F(U L(X) U†) mO(n)(dU) +(dl) (4.3)

for all continuous and bounded functions F: M s
n(R)Q R. Since U L(X) U†

has the same eigenvalues as L(X) it is easy to check that + is the measure
on Sn induced from +̃ by the map L: M s

n(R)Q Sn; and we recall that sn is
induced by nn.

By the Kantorovich–Rubinstein duality formula (1.16), we have

and using the definition of the induced measure together with Lemma 4.1,
we see this is

Applying the duality principle again, we deduce this is

Wp(+, sn)p=sup 3F
S
n
f(l) +(dl)−F

S
n
g(lŒ) sn(dlŒ):

f(l)−g(lŒ) [ ||l−lŒ||pap(n) 4 ;

[ sup 3F
Ms

n(R)
f(L(X)) +̃(dX)−F

Ms
n(R)

g(L(Y)) nn(dY):

f(L(X))−g(L(Y)) [ ||X−Y||pcp(n) 4 . (4.4)

[ Wp(+̃, nn)p. (4.5)

By Theorem 1.4(a), this transportation cost is at most cpn−2 Ent(+̃ | nn);
and so to conclude the proof of Theorem 1.4(b), it suffices to show
Ent(+̃ | nn)=Ent(+ | sn). This follows from the fact that the measures +̃

and nn are invariant under the dual of the conjugation action of O(n) which
rotates the function h: Mn(R)Q R to hU(X)=h(UXU†) (X ¥M s

n(R),
U ¥ O(n)). Indeed, there exists a continuous h which satisfies

F
Ms

n(R)
eh(X)nn(dX) [ 1 (4.6)

Almost Sure Weak Convergence for the Generalized Orthogonal Ensemble 323



and

F
Ms

n(R)
h(X) +̃(dX) \ Ent(+̃ | nn)− e; (4.7)

moreover, by invariance the same conditions hold for hU. Averaging (4.6)
over U ¥ O(n) with respect to Haar measure, we see that the invariant
function OhP(X)=>O(n) hU(X) mO(n)(dU) satisfies

F
Ms

n(R)
OhP(X) +̃(dX) \ Ent(+̃ | nn)− e (4.8)

by Fubini’s Theorem; whereas by Jensen’s inequality > eOhPnn(dX) [ 1.
Since OhP may be regarded as a function on Sn, and +̃ and nn induce + and
sn respectively, we deduce

Ent(+ | sn) \ Ent(+̃ | nn).

The converse inequality is clear.

Proofs of Theorems 1.5(b) and 1.6(b). Using the arguments of the
preceding section, we can deduce Theorems 1.5(b) and 1.6(b) from 1.4(b).

We shall now show that the measure nn is concentrated near to zero.
Ultimately our estimates will show that the weak limit of the empirical dis-
tribution is of compact support.

Proposition 4.2. There exist constants 0 < ap, Kp <., independent
of n, such that

F
Ms

n(R)
exp{ap ||X||

p
cp(n)} nn(dX) [Kp. (4.9)

Proof. By a standard convexity lemma from refs. 24, 21 p.7, there
exists a net of the unit sphere in cq(n) consisting of n×n matrices
Y1, Y2,..., YN, where N [ 5n2, such that ||Yj ||cq(n)=1 and

||X||cp(n) [ 2 max
j

tracen(XYj) (X ¥M s
n(R)). (4.10)

The functional Fj: XW tracen(XYj) has Lipschitz norm one cp(n)Q R;
and > Fj(X) nn(dX)=0, since nn is symmetric. By Theorem 1.6(a) we have

F
Ms

n(R)
exp{tFj(X)} nn(dX) [ exp{tqn−2/(p−1)cp} (t > 0), (4.11)

324 Blower



from which we deduce by Chebyshev’s inequality

nn[Fj(X) > s] [ exp 3 −s
pn2(q−1)
cp−1
p qp
4 (s > 0). (4.12)

We have, by the choice of functionals in (4.10),

nn[||X||cp(n) > 2s] [ C
N

j=1
nn[Fj(X) > s]

[ exp 3n2 log 5−
spn2(q−1)
cp−1
p qp
4 . (4.13)

We choose s0 so that log 5=sp0(q−1)/q
qcp−1

p , and then with s1=2s0
we have bp > 0 with

1
n2 log nn[||X||cp(n) > s] [ −bp(s−s1)p (s \ s1). (4.14)

The stated result now follows by a straightforward application of Fubini’s
Theorem. For a general discussion of deviation inequalities of the style
(4.14), see Ellis’ book.(12)

Chevet(24, 29) proved that if Y is a n×n matrix whose entries are
mutually independent Gaussian N(0, 1/n) random variables, then there
exists a constant K independent of n for which the mean operator norm
satisfies E ||Y|| [K. The proof of this result uses a fact, special to Gaussian
processes, known as Slepian’s Lemma:

If (Zj: 1 [ j [N) and (Z −j: 1 [ j [N) are Gaussian processes with
E |Zj−Zk |2 [ E |Z −j−Z

−

k |
2 for all j and k, then E supj Zj [ 2E supj Z

−

j.
For general orthogonal ensembles there is no such simple connection

between covariance and bounds on the associated processes; in Section 6
we investigate how uniform 2-convexity is related to derivatives of the
potential and to statistical properties of the eigenvalues. Here we use
concentration of measure to prove an analogue of Chevet’s Lemma in the
uniformly p-convex case.

Proposition 4.3. The means of the largest eigenvalue are uniformly
bounded: there exists K <., independent of n, such that

F
S
n

lnsn(dl) [K. (4.15)
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Proof. The numerical radius of a real symmetric matrix co-incides
with its operator norm, which is the largest eigenvalue in modulus. We can
choose a net (tj)

n
j=1 of the unit sphere of a2(n), of cardinality at most

N=5n, such that ln(X) [ 2 maxj Fj(X), where

Fj(X)=OXtj, tjPa2(n) (X ¥M s
n(R); j=1, 2,..., N) (4.16)

are the associated linear functionals. We note that > Fj(X) nn(dX)=0 by
symmetry, and the Lipschitz norm of Fj is at most n1/p for j=1, 2,..., N.

By the concentration inequality of Theorem 1.6(a), we have

F
Ms

n(R)
exp{sFj(X)} nn(dX) [ exp 3cpsqn− 1

p−1 4 (s > 0); (4.17)

and consequently by Chebyshev’s inequality

nn[Fj > t] [ exp 3 −(q−1) nt
p

qpcp−1
p

4 (t > 0). (4.18)

From the choice of Fj, we deduce that

sn[ln > 2t] [ C
N

j=1
nn[Fj > t] [ 5n exp 3 −(q−1) nt

p

qpcp−1
p

4 . (4.19)

From this deviation estimate the stated results follows easily by Fubini’s
Theorem.

5. CONVERGENCE OF THE EMPIRICAL DISTRIBUTION

Let mn=
1
n ;n

j=1 dlj be the empirical distribution of states, where the
eigenvalues lj have joint distribution sn. We shall show that the mn are
weak-f convergent almost surely as nQ. to a compactly supported non-
random distribution. The structure of the argument comes from Haagerup
and Thorbjørnsen’s paper,(15) and they attribute it to Pisier. The results of
ref. 15 apply to the Gaussian case which involves the uniformly 2 convex
Hilbert–Schmidt norm on matrices. We extend the method to uniformly
p-convex potentials.

To show that > f dmn converges for f ¥ C0(R), we take f belonging to
the linear subspace of Lipschitz functions, which is dense for the supremum
norm, and consider Fn(l)=

1
n ;n

j=1 f(lj). Throughout this section, Sn shall
have the ap(n) metric and M s

n(R) the cp(n) metric. It follows from Hölder’s
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inequality that the Lipschitz norm of F is at most L, if the Lipschitz norm
of f is at most L.

Regarding Fn as a random variable, we let mn be a median of Fn,
so that A=[Fn [ mn] has limxQ mn − sn[Fn [ x] [ 1

2 [ sn(A). Since Fn is
L-Lipschitz, we have

[− e+mn [ Fn [ mn+e] ` Ae/L 5 (Ac)e/L (5.1)

and hence, by the isoperimetric inequality of Theorem 1.5(b),

sn[− e+mn [ Fn [ mn+e] \ 1−2 exp{−cpn2ep/Lp} (e > 0). (5.2)

By the first Borel-Cantelli Lemma we deduce that

P[|Fn−mn | > e for infinitely many n]=0 (5.3)

since the series ;.

n=1 exp{−cpn2ep/Lp} is rapidly convergent. This shows
that Fn−mn Q 0 almost surely as nQ..

By a further application of the isoperimetric inequality, we can replace
the medians by the means Mn=>> f dmn dsn. Indeed, for 0 < a <. the sets
Bn=[− e/na+mn [ Fn [ mn+e/na] have sn(Bn)Q 1 as nQ., as in (5.2).
By Fubini’s theorem we have

|Mn−mn | [ F
S
n
|F(l)−mn | sn(dl) (5.4)

[ F
Bn

|F(l)−mn | sn(dl)+F
.

0
sn
5|Fn−mn | \ r+

e

na
6 dr. (5.5)

The first integral in (5.5) is plainly at most Le/na, and the second integral
involves

sn
5|Fn−mn | \ r+

e

na
6 [ 1−sn[(Bn)r/L] (5.6)

where both these estimates follow from the L-Lipschitz bound on Fn. It
follows from the isoperimetric inequality (1.20) that the final integral in
(5.5) is at most

F
.

0

R1−sn[(Bn)r/L]S dr [ F
.

0
exp˛−cpn2rp/L p̌ dr

=
L

p(cpn2)
1
p

C 1 1
p
2 (5.7)

for all sufficiently large n.

Almost Sure Weak Convergence for the Generalized Orthogonal Ensemble 327



By Theorem 2 of ref. 7, the Mn converge as nQ. since the integrated
densities of states converge weakly. We deduce that fW limn > f dmn

defines a positive linear functional on C[−KŒ, KŒ] of norm at most one,
for each KŒ <.. Since mn is supported on [l1, ln], where l1 ’ −ln and ln

obeys the distributional estimate (4.19), we deduce from the F. Riesz
representation theorem that there exists a probability measure r supported
on [−K, K] for some K <. for which (1.11) holds.

6. UNIFORM 2-CONVEXITY

In this section we give an alternative approach to the inequalities
which are used in the proof of Theorem 1.2, using hypotheses familiar from
the theory of logarithmic Sobolev inequalities as in refs. 1, 13. Let v be an
even and three-times continuously differentiable real function and take
V(X)=tracen v(X) for each X ¥M s

n(R). We can regard V as a function of
the matrix entries [X]jk (1 [ j [ k [ n), and form the gradient NV, repre-
sented by the matrix of first-order partial derivatives “jkV with respect to
the [X]jk, with “jkV=“kjV; this pairs naturally with Y ¥M s

n(R) according
to ONV | YP=;1 [ j, k [ n (“jkV)[Y]jk. The Hessian of V is the doubly
indexed matrix “jk“amV of second -order partial derivatives with respect to
[X]jk, and this may be associated with a bilinear form (Y, W)W
;1 [ j, k, a, m [ n (“jk“amV)[Y]jk [W]am on M s

n(R)×M
s
n(R). In this section we

prove:

Theorem 6.1. Suppose that there exists d > 0, with vœ(x) \ d > 0
for all x ¥ R. Then the empirical distribution of eigenvalues, associated with
the ensemble on M s

n(R) given by

nn(dX)=Z−1
n exp(−n2V(X)) dX, (6.1)

converges weakly almost surely as nQ. to some non-random probability
measure supported in a bounded interval in R.

The proof depends upon the following two lemmas.

Lemma 6.2. The function V: M s
n(R)Q R is twice continuously dif-

ferentiable with

OHess V, Y é YP \ d ||Y||2c2(n) (Y ¥M s
n(R)). (6.2)

Proof of Lemma 6.2. The spectra of the operators X+tY with X
and Y in M s

n(R) and −1 < t < 1 lie in a bounded interval in R. Hence,
without changing V(X+tY), we can restrict v to some bounded interval
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and then extend v by periodicity to the real line. Since this modified v is
three times differentiable, its Fourier coefficients decay rapidly; and we can
establish differentiability of V(X+tY) by estimating the derivatives of
tracen exp(iu(X+tY)). From Duhamel’s formula follow the estimates
required to show that V is twice continuously differentiable.

On a set W …M s
n(R

n) of full measure, the eigenvalues of X are dis-
tinct, and here we can calculate the successive partial derivatives of lj with
respect to the matrix entries by using the perturbation theory of eigen-
values.(25) At X ¥ W we can write the Hessian of V in terms of the eigen-
values and the potential as

OHess V, Y é YP=
1
n

C
n

j=1
{vœ(lj)ONlj | YP2+vŒ(lj)OHess lj, Y é YP} (6.3)

for each Y ¥M s
n(R). This may be expressed more conveniently in terms of

an orthonormal basis (tj)
n
j=1 of eigenvectors of X corresponding to eigen-

values (lj)
n
j=1, with the Rayleigh–Schrödinger formula(25) giving

OHess V, Y é YP=
1
n

C
n

j=1
vœ(lj)OYtj, tjP

2
R
n

+
2
n

C
j, k: j < k

vŒ(lj)−vŒ(lk)
lj−lk

OYtj, tkP
2
R
n. (6.4)

It follows from (6.4) and the mean value theorem that V is convex when-
ever v is convex; and furthermore that V is uniformly convex in the sense of
(6.2) whenever v is uniformly convex. We can extend the inequality (6.2)
from the dense set W to all of M s

n(R) by continuity.
The condition (6.2) implies uniform 2-convexity in the sense of (1.8),

and is analogous to the conditions (4b) and (23) of Bakry and Emery,(1)

who establish hypercontractivity results for Markovian semigroups.
One can show either directly,(3) or by using the theory of logarithmic

Sobolev inequalities,(1, 23) that such a V satisfies the following transporta-
tion inequality:

Lemma 6.3. Let V satisfy (6.2) for every n. Then all probability
measures w, which are absolutely continuous and of finite relative entropy
with respect to nn, satisfy

W2(w, nn)2 [
2
n2d

Ent(w | nn) (6.5)
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We remark that the helpful term 1/n2 in the constant of (6.5) originates
from the n2 in (6.1).

Proof of Theorem 6.1. Given Lemma 6.3, we can follow the same
approach towards proving weak almost sure convergence of the empirical
eigenvalue distribution as we followed in Sections 4 and 5. Let sn be the
measure on Sn induced by the 1-Lipschitz eigenvalue map L. Then by
duality sn satisfies a transportation inequality similar to (6.5).

Arguing as in the proof of Theorem 1.6(a), we see that any 1-Lipschitz
function F: (Sn, a2(n))Q R with > F(l) sn(dl)=0 satisfies the concentra-
tion inequality

F
S
n

exp{tF(l)} sn(dl) [ exp 1 t
2

2n2d
2 (t ¥ R). (6.6)

Likewise sn satisfies the isoperimetric inequality

sn(Ae) \ 1− exp 1 −dn2e2

8
2 (e > 0) (6.7)

for all measurable A … Sn with sn(A) \
1
2 . We can now complete the proof

of the Theorem 1.2 with the same technique as in Section 5, by applying a
concentration inequality to F(l)=1

n ;n
j=1 f(lj) for suitable choices of A.

7. PERTURBATION OF POTENTIALS

The methods of the preceding sections appear to be special to uni-
formly p-convex potentials V(X), but one should expect some of the results
to hold for certain multiple-well potentials obtained by perturbation. Let u
be a uniformly bounded and continuously differentiable real function, and
set U(X)=tracen u(X) for X ¥M s

n(R). We introduce various probability
measures which are counterparts to those of section one: the ensemble

nu
n(dX)=Z(n, u)−1 exp{−n2(U(X)+V(X))} dX (7.1)

on M s
n(R), for normalizing constant 0 < Z(n, u) <.; the corresponding

eigenvalue distribution su
n(dl) on Sn; together with the empirical distribu-

tion under this law mu
n, and the associated integrated density of states qu

n

on R.
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The ensemble nu
n of (7.1) may be regarded as a modification of nn of

(1.4), and the strength of the perturbation is partly measured by the ‘‘free
energy’’ expression(12)

Fu, n(t)=log F
Ms

n(R)
exp{−tn2U(X)} nn(dX) (t ¥ R). (7.2)

Boutet de Monvel, Pastur and Shcherbina(7) show that, as nQ., the
mu

n converge weakly in probability to ru, the weak limit of the integrated
densities of states qu

n. They show further that ru is the solution of a certain
variational problem; when the potential U+V has multiple wells, the
support of ru can consist of several disjoint intervals, in contrast to Propo-
sition 1.3. See ref. 9. The following results give information as to the com-
parative positions of the supports of r and ru.

Proposition 7.1. There exist 0 < tn < 1 such that

Wp
p(q

u
n, qn) [

Cp

n2 F
'

u, n(tn) (n \ 1). (7.3)

Proof. It follows from the Kantorovich–Rubinstein duality formula
(1.16) and Lemma 4.1 that the transportation costs satisfy

The main transportation inequality (1.17) shows this to be bounded by the
relative entropy

Wp
p(q

u
n, qn) [Wp

p(n
u
n, nn). (7.4)

[
Cp

n2 Ent(nu
n | nn)

=
Cp

n2
1F

Ms
n(R)

−n2U(X) nu
n(dX)−Fu, n(1)2 . (7.5)

We bound the final term by applying Jensen’s inequality to (7.2) and
obtain

Wp
p(q

u
n, qn) [ Cp F

Ms
n(R)

U(X)(nn(dX)− nu
n(dX)); (7.6)

Almost Sure Weak Convergence for the Generalized Orthogonal Ensemble 331



which may otherwise be expressed as

Wp
p(q

u
n, qn) [

Cp

n2 (F
−

u, n(1)−F
−

u, n(0)). (7.7)

On applying the mean value theorem, we deduce the stated result.

Corollary 7.2. (a) For p \ 2 even and ap > 0, let v(x)=apxp and
u(x)=;p−1

j=0 ajx
j. Then the Wasserstein distance between the limiting

integrated densities of states associated with the potentials u+v and v
satisfies

Wp(ru, r)p [ lim inf
nQ.

Cp

n2 F
'

u, n(tn). (7.8)

(b) A similar result holds when v(x)=ap |x|p, with 2 [ p <. and
ap > 0, and u is a uniformly bounded and continuously differentiable real
function.

Proof. (a) By the triangle inequality

Wp(ru, r) [Wp(q
u
n, qn)+Wp(qn, r)+Wp(q

u
n, ru), (7.9)

where the first summand may be bounded using Proposition 7.1. Such a u
is Lipschitz on each bounded subset of R. By Theorem 2 of Boutet de
Monvel(7) et al., qu

n converges weakly to ru and qn converges weakly to r as
nQ.. We shall improve this to convergence in the Wasserstein metric by
showing that the sequences of measures |x|pqu

n(dx) and |x|pqn(dx) are uni-
formly tight. For the latter sequence, this follows from (4.14).

One checks that

sup
n \ 1

F
[|x| \ R]

|x|p qu
n(dx)=sup

n \ 1
F
[||X||cp(n) \ R]

||X||pcp(n) nu
n(dX), (7.10)

and we require to show that these terms converge to zero as RQ.. It
follows from the non-commutative Hölder inequality(26) that there exist
constants o1 and o2 with

|U(X)| [ o1+o2 ||X||
p−1
cp(n) (X ¥M s

n(R)). (7.11)
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Consequently we can apply Jensen’s inequality to deduce

Fu, n(1) \ −n2 F
Ms

n(R)
(o1+o2 ||X||

p−1
cp(n)) nn(dX) \ −n2o3, (7.12)

where the existence of this latest constant follows from (4.14). We can now
write

(7.10) [ sup
n \ 1

F
[||X||cp(n) \ R]

exp{n2(o1+o3+o2 ||X||
p−1
cp(n))} nn(dX); (7.13)

and the latest integral converges to zero as RQ. on account of (4.14).

(b) The proof when u is uniformly bounded is similar but easier,
for instead of (7.11) we have a constant M with |U(X)| [M for all
X ¥M s

n(R).

8. CONCLUDING REMARKS

The results of the preceding sections and consideration of the
Coulomb gas model of Wigner and Dyson(20) lead us to formulate the
following:

Conjecture 8.1. Let w be a twice continuously differentiable real
function for which there exists d > 0 with wœ(x) \ d outside of some
compact set. Then for b \ 0, the ensemble

=n(dl)=Z(n, w)−1 D
j, k: j ] k

|lj−lk |b · exp 1 −n C
n

j=1
w(lj)2 dl1 dl2 · · · dln

(8.1)

defines a probability measure on the simplex Sn for which Theorem 1.2
holds, so that the empirical distribution of eigenvalues mn=

1
n ;n

j=1 dlj
under this law converges weakly almost surely to some non-random com-
pactly supported probability measure on R as nQ.. Further, =n satisfies
Theorems 1.4(b) and 1.5(b) with constants growing like n2 as nQ..

In support of this Conjecture, we consider the case of b=1 and
w=u+v, where u and v are as in Corollary 7.2(a). Using results of
Bobkov, Ledoux(5) and Götze,(4) one can show that each of the measures
satisfies the logarithmic Sobolev inequality

F
S
n
f2 log f2/||f||2L2(=n) d=n [ Ln(w) F

S
n
||Nf||2Rn d=n (8.2)
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for all non-negative f in L2(=n) with L2(=n) distributional gradient. This
leads to transportation inequalities W1(a, =n)2 [ 2Ln(w) Ent(a |=n) by the
results of Bobkov and Götze(4), and hence to variants of Theorem 1.4(b),
1.5(b) and 1.6(b). Unfortunately, our bounds on the constants Ln(w) do
not decay as nQ., and we have not been able to obtain an appropriate
version of Theorem 1.2. The said bounds use the perturbation estimates on
logarithmic Sobolev constants, due to Deuschel(10) and Stroock, which are
not well adapted to the present setting. Kac(17) obtains estimates on the
heat kernel for killed Brownian motion. His results suggest that the
logarithmic Sobolev inequality should hold for the measure =n, which is
invariant under a diffusion process for the eigenvalues similar to that of the
Coulomb gas model in ref. 20, p.195.
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